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Presentation Notes
Thank-you
Co Authors

In 1903 Ernst Rutherford said that Biology is akin to postage stamp collecting.  As a physicist he was alluding to the lack of models and the ability to predict biological phenomena.
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Goal: P(Phenotype|Data,Model)

Presenter
Presentation Notes
Pred P  Need to consider diagnoses Predict skin cancer?
              Need to consider prediction of therapeutic treatments  both efficacy and side effects (unintended consequences)

Needs to fit the DOE  mission for OBER:  
ie  energy production  Are we looking at ways to add value to farmers that are dealing with commodities that are bringing in less money today than they did in 1980?
Carbon sequestration.  Can we engineer proteins that will deposit C into lignins that will end up in 2x4s and other long lasting materials or into  humic and folic acid in the soils through the roots of plants and soil micro organisms?
Can we engineer proteins that will Sequester heavy metals and radioactive isotopes and break these down?
Cetral Dogma
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Biochemical
Networks

mRNA

Proteins

Ancestry &
Environment

DNA

Discovery-Driven Data, Models and Computing 
Resources  for Predicting the Phenotype.

Data and Quality Models and Lack of Fit Compute Resources

Presenter
Presentation Notes
Central Dogma provides a frame workd to develop a two dimensional landscape
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Ancestry and EnvironmentAncestry and Environment

Data:


 

Pedigrees, Breeding Records, Progeny Performance Trials


 

Family Histories, Clinical Records, Environmental Exposure


 

105 - 107 records per trait in geographically distributed, heterogenous 
repositories. 



 

.05 - .5

Models:
 y = X

 

+  Z

 

+  

Compute Resources:
 For brute-force ML, RAM needs to accommodate data from 

multiple sources and a few million records.  

Presenter
Presentation Notes
Maximum Liklihood 
Lack of Fit
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Predictions from DNA informationPredictions from DNA information
Data:



 

Physical Maps, Linkage Maps and SNPs


 

Nucleotide Sequences


 

1.6 x 1010 sequences in a few geographically distributed repositories. 


 

Sequencing erros, .01; annotation errors ? 

Models:
 y = X

 

+  Z

 

+ W

 

+ 


 

Blast (seqi ~ seqj => function) ; sij = ln(qij /Pi Pj ) / u

Compute Resources:


 

200K ESTs: 2 weeks, 16-node Linux cluster with 16 Gb RAM
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Weakness of sequence Weakness of sequence 
annotations:annotations:

Function assigned Function assigned 
based on sequence similaritybased on sequence similarity

to another sequenceto another sequence
with awith a

function assigned function assigned 
based on sequence similaritybased on sequence similarity

to another sequenceto another sequence
with awith a

Function assigned Function assigned 
based on sequence similaritybased on sequence similarity

to another sequenceto another sequence
with a with a ……......

Computerized stamp collecting Computerized stamp collecting 
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Predictions from DNA informationPredictions from DNA information
Data:



 

Physical Maps, Linkage Maps and SNPs


 

Nucleotide Sequences


 

1.6 x 1010 sequences in a few geographically distributed repositories. 


 

Sequencing erros, .01; annotation errors ? 

Models:
 y = X

 

+  Z

 

+ W

 

+ 


 

Blast (seqi ~ seqj => function) ; sij = ln(qij /Pi Pj ) / u



 

CASP (seq => structure => function)

Compute Resources:


 

Moderate sized clusters of commodity-grade processors.

Presenter
Presentation Notes
New Algorithms are being developed as a result of the biannual competition to predict protein structure
From these predicted structures it is possible to infer function from among a broad class of similar structures, but specific functions in the context of a specific biochemical pathway or network needs additional information.  
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Presenter
Presentation Notes
Note active sites and how they change with change of one amino acid
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Understanding the Mechanisms of Understanding the Mechanisms of 
Protein FoldingProtein Folding



 

Will lead to an understanding of protein function in various 
cellular environments 

(Misfolding is known to occur and be responsible for serious diseases)

Resulting in development of predictable diagnostics, novel 
protein-based therapeutics, novel proteins for sequestering C, 
heavy metals, and radioactive isotopes.
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Understanding the Mechanisms of Understanding the Mechanisms of 
Protein FoldingProtein Folding

Experimental techniques are limited for relevant time scales, 
thus there is a need for simulation of 

 folding kinetics

 folding pathways

 force-field assessments

Allen et al. 2001.  “Blue Gene: A vision for protein science using a petaflop supercomputer”. 
IBM Systems Journal 40:310-327.

Levitt et al. 2002. “Modeling Across the Scales - Atoms to Organisms” Mathematics and 
Molecular Biology VII.  Program in Mathematics and Molecular Biology. Santa Fe, N. Mex.
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Computing Needs for Mechanisms of Computing Needs for Mechanisms of 
Protein FoldingProtein Folding

Time frame to simulate 10-4 sec

Time-step size 10-15 sec

Number of MD time steps 1011

Atoms in a typical protein/water simu 3.2 x 105

Number of interactions in a force calc 109

Instructions per force calc 103

Total number of instructions 1023

Allen et al. 2001.  “Blue Gene: A vision for protein science using a petaflop supercomputer”
IBM Systems Journal 40:310-327.

Presenter
Presentation Notes
If we assume the use of a petaflop/sec machine, then it would take 3 years to simulate 100 micoseconds…. A typical time frame for simulating the protein  folding pathways 
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Predictions from mRNA and proteomic Predictions from mRNA and proteomic 
arraysarrays

Data:


 

gene-chips, micro-arrays, bead-arrays (MPSS), proteomic arrays 


 

very sparse data, relative to biological time scales, snap shots of 
average transcription from pools of similarly treated cells



 

104 - 105 genes per experiment; 104 experiments in geographically 
distributed, heterogenous repositories.



 

.1 - .5

Models:
 y = X

 

+  Z

 

+ W

 

+ T

 

+ 

 Support Vector Machines

Compute Resources:

 RAM needs to accommodate data from multiple arrays, 
multiple experiments, GenBank, SwissProt, Kegg, Pfam, 
PathDB

Presenter
Presentation Notes
Poor reproducibility
Sensitivity, ie power of ~ 
specificity, ie type 1 error 
Current analysis tools are based on simple clustering techniques.that provide some intuition for the biologists
Show Cluster analysis slide.  
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Examples of data from Examples of data from 
micromicro--arrays and 2 D gel protein arraysarrays and 2 D gel protein arrays
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Presenter
Presentation Notes
Needs  Data Acquisition:
Note  original images are in Red Green and yellow
Image processing (>2 channel)
Integration with sequence DBs

Note Clusters
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VxInsight
(SNL: George Davidson)
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Predictions from Expression ArraysPredictions from Expression Arrays
Data:



 

gene-chips, micro-arrays, bead-arrays (MPSS), proteomic arrays 


 

very sparse data, relative to biological time scales, snap shots of 
average transcription from pools of similarly treated cells



 

104 - 105 genes per experiment; 104 experiments in geographically 
distributed, heterogenous repositories.



 

.1 - .5

Models:
 y = X

 

+  Z

 

+ W

 

+ T

 

+ 

 Support Vector Machines

Compute Resources:

 RAM needs to accommodate data from multiple arrays, 
multiple experiments, GenBank, SwissProt, Kegg, Pfam, 
PathDB

Presenter
Presentation Notes
swissprot �=========�Release 40.7 of SWISS-PROT contains 103370 sequence entries, comprising�38071553 amino acids abstracted from 93529 references. �KEGG�====�146 Pathways�79 organisms�328344 genes�46107 enzymes (here: more relevant than genes)�3829 EC numbers�9560 compounds�2427 compounds with links to pathways�Genbank�=======�14976310 sequences�PathDB�======�15029 Proteins�26576 Steps�1906 EC Numbers�127 Organisms�267 Pathways�
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Pathways and NetworksPathways and Networks

Data:


 

expression arrays


 

cross-link arrays of protein-protein, protein-DNA and protein-RNA 
interactions.



 

Very sparse data, i.e., snap shots at discrete time/treatment/tissue 
samples



 

geographically distributed, hetoerogenous repositories

Models:


 

Hypothetical networks of nodes and edges, e.g.,   Baysian 
Networks

Compute Resources:


 

Similar to “radiation transport” simulations?
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Data Needed for Inferring Genetic Data Needed for Inferring Genetic 
Networks from N GenesNetworks from N Genes

D’haeseleer, 1997. Data Requirements for Gene Network Inference 
http://www.cs.unm.edu/~patrik/networks/

Boolean, Fully Connected 2N

Boolean, K Connections per Gene 2K[log(N)]

Boolean, K Connections per gene based on linearly
separable functions

K[log(N)]

Presenter
Presentation Notes
If we assume the use of a petaflop/sec machine, then it would take 3 years to simulate 100 micoseconds…. A typical time frame for simulating the protein  folding pathways 
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Simple network diagram including protein Simple network diagram including protein 
complexes, metabolic reactions and proteincomplexes, metabolic reactions and protein--

 protein interactionsprotein interactions
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Presenter
Presentation Notes
Digital Cell  Colin Hill
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A Need for IntegrationA Need for Integration


 

The data are located in hundreds of geographically distributed, 
heterogenous repositories.



 

Analysis tools (implemented algorithms) are likewise widely 
dispersed.



 

Novel algorithms will be developed redundantly by independent PI.


 

High performance computing resources are limited, but 
geographically distributed. 

Presenter
Presentation Notes
This is going to be one of the more difficult
Unlike high energy physics, high throughput biology is not concentrated in a few labs.  
Technologies are becoming commodity priced very fast
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Functional information highlighted on 
a network of yeast peroxisomal

 proteins

Presenter
Presentation Notes
Link of known functions on a  network of proteins.  The network is proposed based on evidence of protein - protein interactions.  
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Integration TaxonomyIntegration TaxonomyIntegration Taxonomy

Software OrientedSoftware OrientedData OrientedData Oriented

••Data WarehouseData Warehouse

••Federated DatabasesFederated Databases

••Multiple DatabasesMultiple Databases

••Web based (hyperlinksWeb based (hyperlinks))

••Component basedComponent based
• proprietary
• enterprise
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Complex database and softwareComplex database and software

Rigidity

Fragility

Expense

Software invariably lastsSoftware invariably lasts
longer than you think (Y2K)longer than you think (Y2K)
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Loose Coupling ArchitectureLoose Coupling Architecture

Tight packaging of data and application allows context 
sensitive display of information.

Plug and play architecture emphasizes communication 
between components via fundamental biological concepts.

Separate components allow parallel and independent 
scientific advancements.
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Server 
Proxies

Clients

SimSearch
SP

Entrez
SP

IdMapping
SP

XCluster
SP 

(Web Extension)ISYS Platform

ATVTable
Viewer

BDGPGO
Browser

Web Browser 
(with ISYS wrapper)SimSearch

Browser
maxdView SimSearch

Launcher

Sequence
Viewer

Local 
CPU, 
Disk

Internet 
Resources

Web Proxy

(your client)

(your client)

(your SP)
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Integrated biological data types with an Integration Platform.Integrated biological data types with an Integration Platform.
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Databases and analysis
servers

MOBY
Directory Server

Client

Databases and analysis
servers

1. Register <name,URL,class>

2. Request <service,class>

3. <name,URL,class>...

4. Request <class>

5. <class> data...
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Biochemical
Networks

mRNA

Proteins

Ancestry &
Environment

DNA

Discovery-Driven Data, Models and Computing 
Resources  for Predicting the Phenotype.

Data and Quality Models and Lack of Fit Compute Resources
Large volume
Highly distributed
low error

Huge volume
Few repositories
very low error

Huge volume
Thousands of repositories
Multiple Platforms
high error
Huge volume
Hundreds of repositories
Multiple Platforms
high error

Very little experimental 
data

Linear Models
Very large LOF

Linear Models with a large LOF
Annotation with potentially huge
LOF

Linear Models with a LOF
SVM ?

Protein Structure Predictions
Protein Folding Mechanisms 
via simulation modeling?

Baysian Networks
Radiation Transport and 
other simulation models?

Commodity Clusters

Commodity Clusters

Large RAM

Commercial  SPM
Blue-Gene +

Commercial  SPM
Blue-Gene +
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Enabling Biology to Become Enabling Biology to Become 
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S. cerviseaeH. sapiens A.thaliana

SPECIES

Phenotypic

Pathways

Expression

Genomic

DATA TYPE

Bioinformatics

Visualize

Query
Store

BIOINFORMATIC 
ACTIVITIES

Analyze

Acquire

Model

DiscoverDiscover

DevelopDevelop

DeliverDeliver
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DISCOVERY
IDEA

CONTROLLED EXPERIMENT
Massively Parallel

Data Collection
(LIMS, Image Processing)

DATA MANAGEMENT:
Store, Retrieve,

Integrate

IP:
Drug Targets,
Gene Targets,
Diagnostics,

Software Systems,
Analysis Services

IP: 
Technology
Platforms

IP: 
Software Systems

Information Services

DATA INTERPRETATION:
Analyses, Predictive 

Models, 
Systems Biology

DISCOVERY-DRIVEN BIOLOGICAL 
RESEARCH
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